Dmlog小工具使用简要

Dmlog小工具可以用作分析已经形成的logcommit,直接形成直观的excel,判断哪些是执行时间较长的 SQL,频率较高的SQL,从而优化整个事务,使应用效率更高。

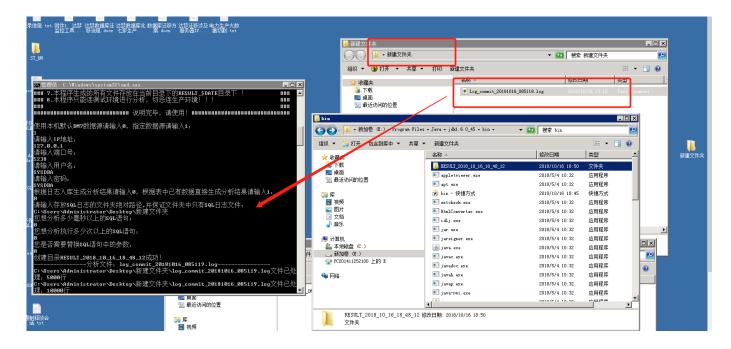
Dmlog_DM7_v5.1.jar

以此版本为例,使用过程纪要如下:

1 在windows环境中,开启一个dos窗口,执行以下内容

java -jar E:\javahome\jdk1.6.0 4564\bin\Dmlog DM7 v5.1.jar

执行后即打开工具,有以下内容需要填写,按照顺序为:


IP地址:本电脑数据库地址

端口号:本地库端口号

用户名,密码:本地数据库信息

```
E:\Program Files\Java\jdk1.6.0_45\bin>java -jar E:\达梦数据库相关软件_20161129\L
og_Commit日志分析工具\Dmlog_DM7_v5.1.jar
###
### 1.请确认sql trace参数,确保每条语句后紧跟sql语句时间: 1:25
                                                                           ###
### 1.请佣认sql trace参数,佣保母家语可后案跟sql语可时间: 1:25
### 2.本程序建表log_commit进行分析
### 3.本程序建表前会删除同名表,请做好备份 !
### 4.请使用页大小为32k的DM7进行分析 !
### 5.结果中sql语句背景为黄色的表示sql长度超过30000.已截断 !
### 6.截断的语句会保存到文本文件中,如第一条截断会生成Q1.txt !
### 7.本程序生成的所有文件存放在当前目录下的RESULT_$DATE目录下 !
### 8.本程序只能连测试环境进行分析,切忌连生产环境!!!
                                                                           ###
                                                                           ###
                                                                           ###
                                                                           ###
                                                                           ###
###
使用本机默认DM7数据源请输入➋,指定数据源请输入1.
请输入IP地址:
127.0.0.1
请输入端口号:
5238
请输入用户名:
SYSDBA
  输入密码:
```

2准备一个新的路径地址,存放一个单独的logcommit文件

按顺序填写自动跳出的内容并回车,会在开启这个小软件的路径下生成对应的Excel文件:

more_than_0_times_log_result.xls

可以按照需求进行排序,查看SQL具体情况,示例如下:

1	序号	SQL语句	最大执行时间	最小执行时间	90%平均执行时间	平均执行时间	执行次数	优化方法	优化后时间
2	251	select to char(count (*)) m from (select distinct	13907. 0	13907.0	13907.0	13907.0	1	V41470 IIA	Varanary
3	208	select distinct aa.*, decode(trunc(aa.cxs)	7738.0	7738.0	7738.0	7738.0	1		
4	204	select distinct aa.*, decode(trunc(aa.cxs)	7616.0	7616.0	7616.0	7616.0	1		
5	234	select distinct aa.*, decode(trunc(aa.cxs)	7480.0	7480.0	7480.0	7480.0	1		
6	207	select distinct aa. *, decode(trunc(aa.cxs)	7313.0	7313.0	7313.0	7313.0	1		
7	193	select to_char(count (*)) m from (select distinct	6371.0	6371.0	6371.0	6371.0	1		
8	211	select to_char(count (*)) m from (select distinct	6260.0	6260.0	6260.0	6260.0	1		
9	217	select distinct aa. *, decode(trunc(aa.cxs)	4726.0	4726.0	4726.0	4726.0	1		
10	135	select '0' as orgid, as text, 0 as coms	27985.0	1015.0	4163.0	5662.0	36		
11	227	select distinct aa. *, decode(trunc(aa.cxs)	4127.0	4127.0	4127.0	4127.0	1		
12	243	select to_char(count (*)) m from (select distinct	3951.0	3951.0	3951.0	3951.0	1		
13	238	select to_char(count (*)) m from (select distinct	3950.0	3950.0	3950.0	3950.0	1		
14	245	select to_char(count (*)) m from (select distinct	3933.0	3933.0	3933.0	3933.0	1		
15	197	select to_char(count (*)) m from (select distinct	3779.0	3779.0	3779.0	3779.0	1		
16	194	select to_char(count (*)) m from (select distinct	3742.0	3742.0	3742.0	3742.0	1		
17	190	select to_char(count (*)) m from (select distinct	3719.0	3719.0	3719.0	3719.0	1		
18	184	select to_char(count (*)) m from (select distinct	3713.0	3713.0	3713.0	3713.0	1		
19	229	select distinct aa.*, decode(trunc(aa.cxs)	3669.0	3669.0	3669.0	3669.0	1		
20	240	select distinct aa.*, decode(trunc(aa.cxs)	3590.0	3590.0	3590.0	3590.0	1		